Расширяющийся цемент: характеристики и виды

Что представляет из себя этот строительный материал

Расширяющимся цементом называют минеральное порошкообразное вяжущее вещество, способное увеличиваться в объеме в процессе высыхания раствора. Расширяясь, цементная смесь заполняет собой все пустоты, швы и щели строительной конструкции, формирует ее предварительное напряжение.

Подобные свойства достигаются за счет включения в состав расширяющих компонентов, содержание которых колеблется от 5% до 20%. При контакте с водой разрушаются химические связи, что вызывает увеличение объема исходного состава, образование кристаллических решеток.

В качестве расширяющих добавок используются:

  • алюминия сульфат;
  • сульфат хлористого кальция;
  • гидроксид магния;
  • гидросульфоалюминат кальция;
  • сульфитный щелок;
  • алюминиевая пудра;
  • квасцовый камень.

Свойства расширения в ряде случаев достигаются еще по одной технологии — гашения. Во время этого процесса внутри смеси образуется большое количество мелких пузырьков, повышающих ее объем.

В отличие от ячеистых бетонов, способных терять прочность в процессе пенообразования, растворы с расширяющимся цементом сохраняют прочностные характеристики.

Эффект расширения наблюдается только в условиях повышенной влажности, в то время как при сухой погоде усадка не наблюдается. Самонапряжение железобетонной конструкции происходит независимо от расположения и направления стержней арматуры. В результате получается двухосное объемное самонапряжение, что способствует повышению прочности и стабильности сооружения.

Преимущества состава:

Читайте также: ПУЭ Раздел 2 => Прокладка кабельных линий в кабельных блоках, трубах. И железобетонных лотках. Прокладка кабельных линий в кабельных…

  • высокая адгезия — обеспечивает плотное прилегание смеси к поверхностям конструкции;
  • гидроизоляционные свойства — подходит для заделки трещин, микропор и швов, через которые может просачиваться вода;
  • устойчивость к смене температур — сохраняет технические характеристики и эластичность даже при низких показателях температуры;
  • ускоренный набор прочности — в зависимости от марки, раствор достигает прочности 80% за первые 24 часа.

Часть 3 «Специальные цементы»

Посмотреть все статьи

9.1.2.4.2 Сущность гидрофобизации цементов.

Общие и специальные свойства цементов, бетонов и растворов в большинстве своем зависят от действия воды, которому подвергаются эти материалы в периоды изготовления и твердения, а также во время службы в конструкции. По отношению к воде цемент отличается противоречивыми свойствами: химическое сродство с водой органически присуще цементу (без этого он не мог бы служить вяжущим веществам). Но вместе с тем гидрофильность цемента, т е способность, как в порошкообразном состоянии, так и в виде цементного камня хорошо смачиваться водой, приводит ко многим вредным последствиям.

Так, при помоле клинкера адсорбирующаяся влага вызывает прилипание наиболее мелких частиц цемента к мелющим телам, что затрудняет работу мельниц. Затем, во время транспортирования и хранения цемент поглощает влагу из окружающей среды и теряет активность. Далее, в процессе изготовления бетонных (растворных) смесей цемент обычно иммобилизует значительный избыток воды, что увеличивает пористость цементного камня и вредит его прочности и стойкости.

Наконец, при длительном воздействии воды на отвердевшие цементные материалы их эксплуатационные свойства могут сильно ухудшиться. Помимо ущерба, непосредственно вызываемого водой, ожидаемое вредное ее действие, при крайней неопределенности характера и размера этого действия, иногда затрудняет выбор материалов для конструкций и нередко вынуждает принимать чрезмерно большие запасы “химической прочности”.

Таким образом, взаимодействие цемента с водой имеет двойственный — одновременно и полезный и вредный характер.

Однако гидрофильность цемента нельзя рассматривать как неизменную его особенность, которая неизбежно должна проявляться на всех этапах его изготовления и применения.

Уже давно классики мирового и отечественного бетоноведения обращали внимание на необходимость регулировать свойства цемента по отношению к действию воды. Из задачи преодоления противоречий, заложенных самой природой цемента и исходил научный замысел: изменить свойства цемента таким образом, чтобы он стал менее гидрофилен и даже приобрел “водоотталкивающие” свойства, но в то же время мог бы взаимодействовать с водой на тех стадиях применения, когда это практически нужно.

Таким образом возникла задача – разработать качественно новый технологический путь изготовления цемента с тем, чтобы можно было в известной мере управлять поведением цемента по отношению к воде во всех её агрегатных состояниях и на всех этапах существования цемента, т.е. начиная с операции его помола на цементном заводе, далее в период его перевозки и хранения, затем в момент изготовления бетонных или растворных смесей и, наконец, во время службы цементных материалов в конструкциях.

Такой цемент, процессы вредного взаимодействия которого с водой ограничены, а способность к нормальному гидравлическому твердению остается без изменений, был назван гидрофобным. Первенство в его разработке принадлежит советским бетоноведам Хигеровичу М.И. и Скрамтаеву Б.Г. (а.с. № 84554 с приоритетом от 30.04.49). В начале 50-х годов в СССР было развернуто промышленное производство гидрофобных цементов на ряде цементных комбинатов страны.

9.1.2.4.3 Условия получения гидрофобного цемента.

Гидрофобный цемент получают введением специальных гидрофобизующих добавок при помоле цементного клинкера, и только этой операцией производство гидрофобного цемента отличается от технологии обычных цементов. Кроме того, уже готовому цементу можно придать гидрофобные свойства путем его повторного домола в мельницах в присутствии гидрофобизаторов.

Читайте также: Светопрозрачный бетон — самостоятельное изготовление для реализация смелых решений

Получение гидрофобного цемента основано на образовании хемосорбционных пленок, возникающих на цементных зернах в результате взаимодействия гидрофобизующих добавок со свободной известью, которая выделяется из силикатов цементного клинкера.

Еще за много столетий до нашего времени практиковалось применение гидрофобных органических веществ для повышения водостойкости воздушной извести. Жиры, масла и некоторые другие органические соединения, обладающие гидрофобными свойствами, широко распространены в животном и растительном мире. Повседневно встречая такие вещества в окружающей природе, человек с давних пор применял их не только для питания, но также для различных бытовых и производственных надобностей, в том числе и в строительной технике. Так, например, в древнем Риме к извести добавляли свиное сало и свернувшуюся кровь животных, а в древней Руси — творог, льняную сечку вместе с льняным семенем, отвар еловой коры и другие вещества.

Подобно тому, как еще более далекие наши предки, добывая, огонь путем трения, не подозревали о законе превращения одного вида энергии в другой, так и мастера и зодчие древних и средних веков пользовались органическими поверхностно-активными добавками, физико-химические свойства которых были открыты лишь много веков спустя.

Органические добавки к воздушной извести, которая в старину являлась основным и важнейшим вяжущим веществом, применялись до XVIII в. включительно. Вторая половина XVIII в. и весь XIX в. были эпохой быстрого развития гидравлических вяжущих веществ. Надобность в гидрофобизующих и подобных добавках, как тогда казалось, отпала, и они были забыты.

Когда в начале двадцатого века, когда выяснилось, что водонепроницаемость и некоторые другие свойства цементных бетонов и растворов нуждаются в улучшении, вновь начали применять органические добавки. Наибольшую популярность приобрели добавки, представлявшие собой нерастворимые в воде мыла жирных кислот.

Так, например, под различными названиями (церезит, церолит и др.) использовались смеси олеинокислого кальция и олеинокислого алюминия с гидроокисью кальция. (Последний компонент обычно брали в избытке, чтобы облегчить равномерное распределение олеатов в процессе их введения в бетонную или растворную смесь). Существовали также препараты из битумов, восков и смол, применявшихся в виде эмульсий при изготовлении бетонов и растворов. Иногда гидрофобизация бетонных изделий осуществлялась последовательным пропитыванием растворами мыла и алюминиевых квасцов в воде, либо раствором парафина в дихлорэтане или четыреххлористом углероде или другими составами. Разработка подобных способов гидрофобизации бетонов носила преимущественно эмпирический характер.

Одна из первых попыток не только найти рациональный способ гидрофобизации цементов и растворов, но вместе с тем, исходя из физико-химических представлений, дать такому способу научное обоснование, была сделана еще в 1934 г в ЦНИИПС-е (Центральный Научно Исследовательский Институт Промышленных Сооружений). Так при исследовании капиллярного натяжения воды в цементных порошках, гидрофобизированных каменноугольным пеком. Было впервые научно доказано, что специфической особенностью гидрофобизированных строительных растворов является пониженное капиллярное давление. Было также установлено, что в результате гидрофобизации растворов уменьшается их смачиваемость, гигроскопичность, водопроницаемость и повышается химическая стойкость. В то же время были разработаны первые предложения по способу введения несмачивающиеся водой органические добавки в цементный клинкер при его помоле.

Некоторые из исходных теоретических представлений, которыми пользовалось в то время мировое бетоноведение были пересмотрены. В процессе исследований выяснилось. Что особого внимания заслуживают не гидрофобные, а гидрофобизирующие добавки. Первые, например, парафин, стеариновая кислота или кальциевые соли высших жирных кислот, при смешивании с цементом не реагируют с ним и остаются в нем в виде механической примеси. Вторые, например, водорастворимые мыла жирных, нефтяных или смоляных кислот, сами по себе не гидрофобны, но образуют гидрофобные вещества в результате химического взаимодействия с цементом.

Абсолютно гидрофобные парафин и стеариновая кислота, являясь механической, примесью в цементе, не способны предохранить его от поглощения влаги из воздуха и образования комков, т. е. от порчи при хранении. В то же время жирные кислоты, взаимодействуя с цементом, образуют на поверхности его зерен гидрофобные соли (мыла), которые уменьшают гигроскопичность и предотвращают комкование цемента.

Таким образом, первым принципиальным условием получения гидрофобного цемента является применение не гидрофобных, а именно гидрофобизующих добавок. К добавкам такого типа относятся вещества, содержащие крупные ассиметрично-полярные молекулы и способные при адсорбции на изначально гидрофильной поверхности цементных зерен к взаимодействию с ионами кальция или магния. В результате такого взаимодействования образуются кальциевые или магниевые гидрофобные соли (мыла) ориентированные в строго определенном порядке. Эти молекулы как бы прилипают своими полярными “головками” к гидрофильному телу — цементному зерну, при этом гидрофобные углеводородные радикалы этих молекул обращены наружу. Они то и обеспечивают гидрофильному цементу гидрофобные качества.

Приведенные общие теоретические представления о создании адсорбционных пленок, обладающих гидрофобными свойствами, основываются на работах П. А. Ребиндера. В своих работах по физикохимии флотационных процессов он показал особое влияние химической фиксации полярных групп на оптимальную ориентацию углеводородных цепей и в дальнейшем применил эти положения при исследовании пенобетона.

Как показали дальнейшие опыты, при правильном выборе гидрофобизирующих добавок, получаемый гидрофобный цемент мало гигроскопичен, не смачивается водой и способен длительное время храниться даже во влажной среде без потери активности. Это объясняется тем, что адсорбционные слои, построенные из ориентированных молекул, образуют своеобразный защитный частокол почти на каждом отдельном цементном зерне. Цементное зерно как бы ощетинивается углеводородными радикалами, защищающими цемент от воды.

Однако свойство несмачиваемости цемента не должно препятствовать изготовлению бетонных (растворных) смесей обычным путем. Затворение цемента или любого другого минерального порошка возможно лишь в том случае, когда в процессе перемешивания данный материал смачивается водой. Если краевой угол, под которым лежащая на твердом теле капля жидкости прикасается к его поверхности, будет больше 90°. то полное затворение не осуществимо. Поэтому невозможно, например, затворить измельченный битум водой, как и нельзя, получить однородную смесь из песка или цемента с ртутью.

Для нормального смешивания гидрофобного цемента с водой и заполнителями необходимо, чтобы гидрофобная оболочка не была сплошной и чтобы она легко нарушалась и разрушалась в процессе изготовления бетонной (растворной) смеси. Нужно чтобы защитная пленка на зернах гидрофобного цемента имела своеобразное, т.н. “сетчатое” строение. Тогда становится достаточно незначительных нарушений целостности гидрофобной пленки, чтобы началась гидратация цемента, что влечет сравнительно быстрое обнажение новых поверхностей, имеющих гидрофильный характер, и их смачивание водой. Происходящее при этом развитие и углубление макро- и микрорельефа поверхности зерен в свою очередь содействует растеканию воды и ее усвоению цементом.

Шероховатость поверхности всегда уменьшает угол, под которым лежащая на твердом теле капля прикасается к его поверхности. Краевой угол на поверхности, испещренной углублениями, может дойти до нуля. (Так, капля воды не растекается на горячей плите вследствие образования выравнивающей подстилки из тонкого слоя пара, но хорошо смачивает холодный металл).

Читайте также: Cколько весит 1 куб бетона разных марок

Зерно гидрофобною цемента, реагируя с водой в объеме, раскрывается по множеству плоскостей и при этом изолирующая оболочка теряет свое значение. Следовательно, в период изготовления бетонной (растворной) смеси о примененном гидрофобном цементе нельзя уже говорить как о гидрофобном порошке. Здесь этот цемент становится уже гидрофильным.

Зерна обычного цемента слипаются при первом соприкосновении с водой, но оболочки, имеющиеся на зернах гидрофобного цемента, предотвращают их агрегирование, поэтому при превращении в рабочее состояние такой цемент даже лучше смачивается водой, чем обычный!

Принципиальным условием получения гидрофобного цемента является такое строение гидрофобной оболочки, при котором цемент, затворяемый водой, способен реагировать с ней подобно обычному цементу. Это специфическое строение оболочек достигается благодаря применению гидрофобизующих, но не гидрофобных добавок.

В процессе исследований было также установлено, что применение некоторых гидрофобизующих добавок типа технических мыл, в особенности смоляных, нередко сопровождается значительным вовлечением воздуха в цементные системы. Повышенное и, главное, плохо поддающееся контролю воздухововлечение способно существенно снизить прочность тяжелых бетонов. Это свойство гидрофобизированных цементов следует считать отрицательным при производстве тяжелых бетонов и положительным при производстве легких и ячеистых бетонов.

9.1.2.4.4 Выбор гидрофобизирующих добавок. Их химические свойства.

В лабораторных экспериментах были изучены сотни различных веществ – потенциальных гидрофобизаторов цемента. Но, в конце концов, исследователи остановились на трех классах веществ – нафтеновые, жирные и смоляные кислоты. Эти вещества в той или иной степени присутствуют во многих промышленных отходах, что обуславливает их доступность и дешевизну.

В конечном итоге сущность исследований свелась к оценке воздухововлекающих характеристик тех или иных составов – ведь именно количество вовлеченного воздуха при приготовлении бетонной смеси регламентирует степень применимости гидрофобизированных цементов в тяжелых бетонах.

К счастью в легких, а тем боле в ячеистых бетонах подход к вопросу воздухововлечения диаметрально противоположный. Этот фактор позволяет существенно расширить перечень допустимых к применению гидрофобизаторов.

Известное представление о причинах различного влияния, оказываемого смоляными, нафтеновыми и жирными кислотами на вовлечение воздуха, дает сравнение их пенообразующей способности. В корне неверно и ошибочно судить о воздухоудерживающих свойствах гидрофобизирующих добавок, определяя их пенообразование и пенистость в чистой воде. Испытания в чистой воде не дают абсолютно никакой пользы, т.к. результаты опыта всецело зависят от индивидуальных свойств поверхностноактивной добавки и никоим образом не отражают свойства среды, в которой происходит реальный процесс. В таких экспериментах следует обязательно учитывать, что свежезатворенная цементная система характеризуется сильно щелочной средой пресыщенной катионами кальция.

Пенообразующая способность поверхностно-активных веществ существенно меняется при переходе от чистой воды к воде содержащей ионы кальция и магния. Так омыленные нафтеновые кислоты вызывающие значительное пенообразование в дистиллированной воде, в растворе гидроокиси кальция практически не пенятся. И наоборот, омыленные смоляные кислоты, хорошо и устойчиво пенятся в жесткой воде, а в чистой нет. Все эти выводы справедливы в очень широком диапазоне концентраций.

Эти выводы не являются неожиданными. Давно известно, что в мягкой (дистиллированной) воде смоляные мыла щелочных металлов пенятся не так сильно, как щелочные соли нафтеновых или жирных кислот, вследствие различной степени гидролиза.

Известно также, что прибавление солей щелочноземельных металлов существенно меняет растворимость и пенообразующую способность мыл. В жесткой воде смоляные мыла образуют значительную и довольно устойчивую пену, а мыла жирных и нафтеновых кислот в такой воде отличаются значительно меньшим пенообразующим действием. По этим причинам, например, в мыловарении в состав мыла состоящего в основном из жирных кислот, добавляют некоторое количество смоляных кислот (канифоль) – иначе мыло не будет пениться в жесткой воде.

Детальные эксперименты по измерению поверхностной активности различных гидрофобизирующих добавок показали, что нафтенат и олеат натрия существенно понижают поверхностное натяжение на границе раствор-воздух. Однако при введении извести или цементного порошка их поверхностное натяжение (и соответственно пенообразующая способность) становятся почти такими же, как у чистой воды. Аналогичный результат получается и при исследовании водных вытяжек из гидрофобизированного цемента, изготовленного с добавками олеиновой кислоты или мылонафта: поверхностное натяжение вытяжек почти такое же, как и у чистой воды.

Смоляные же кислоты, часто применяемые в технологии тяжелых, легких и ячеистых бетонов в качестве воздухововлекающих добавок, обладают противоположными свойствами — при замене иона натрия ионом кальция их пенообразующая способность возрастает. В реальной цементной системе на микропенообразование существенное влияние оказывает также и минерализация микропузырьков воздуха продуктами гидратации цемента и ультрамелкими частичками заполнителей. Но в целом можно с достаточной степенью уверенности утверждать, что при наличии свободной извести в реакционной среде (среда реального бетонного замеса) смоляные кислоты обладают значительно большей воздухововлекающей способностью, чем жирные или нафтеновые.

Поэтому смоляные кислоты и их производные и применяют в основном для изготовления “воздухововлекающих” цементов. Для получения же гидрофобизированных цементов добавки выбирают, наоборот, с таким расчетом, чтобы в результате реакции возникали вещества с малой поверхностной активностью, не способные быть сильными микропенообразователями.

Такими добавками служат, прежде всего, нафтеновые, высшие жирные, а также синтетические кислоты и их соли.

Нафтеновые кислоты, названные так первым их исследователем В. В. Марковниковым, образовались путем окисления нафтенов при залегании нефти в недрах земли, а также на ее поверхности и содержатся в большинстве сырых нефтей. По большому счету присутствие нафтеновых кислот в сырой нефти свидетельствует о её низком качестве.

Особенно много нафтеновых кислот в нефти, добываемой на постсоветском пространстве. Так, в азербайджанской нефти имеется от 0.2 до 1.1%, а в нефти Прикарпатья — от 0.1 до 1.2% нафтеновых кислот, с месторождений Западной и Восточной Сибири также поступает нефть со сравнительно большим количеством нафтенов.

В румынской нефти этих кислот тоже достаточно много (от 0,05 до 2,4%). А вот в американской сырой нефти — пенсильванской и калифорнийской — находится весьма незначительное количество нафтеновых кислот. Потому то американская строительная индустрия практически и незнакома со строительными хим. добавками на основе нафтеновых кислот. У них нашли широчайшее применение добавки на основе смоляных кислот (типа микропенообразователя Винсол), которые, как было рассмотрено ранее, не пригодны для производства гидрофобизированных цементов из-за повышенного воздухововлечения, вредного для тяжелых бетонов.

Основным промышленным источником получения нафтеновых кислот являются щелочные отходы, образующиеся при очистке дестиллатов нефти, в особенности солярового и других высококипящих погонов. Эти отходы называют мылонафтом. Мылонафт содержит до 50% воды. Из него получают безводный асидол, т.е. технические нафтеновые кислоты, которые удобнее перевозить и хранить. Чем мылонафт.

Молекулярный вес нафтеновых кислот чаще всего лежит в пределах 155 — 230. Удельный вес — от 0.930 до 1.09. Температура кипения при обычном давлении 215 — 300°С, поэтому при гидрофобизации даже очень горячего клинкера не происходит существенного испарения добавки. Температура застывания нафтеновых кислот весьма низкая, обычно около минус70 — 80°С. По этой причине в зимних условиях удобнее применять незамерзающий асидол, чем мылонафт, в котором происходит вымораживание воды и расслоение смеси на лед и нафтеновые кислоты.

Нафтеновые кислоты не действуют на металлический алюминий. Металлическое железо в ничтожно малой степени растворяется в свободных нафтеновых кислотах, придавая им слабую красно-бурую окраску, но совершенно не поддается действию мылонафта. При взаимодействии с цементом нафтеновые кислоты, а также мылонафт образуют кальциевые и другие соли, не реагирующие с железом.

К группе нафтеновых кислот иногда ошибочно относят и нефтяные сульфокислоты, так как в некоторых отраслях промышленности эти материалы являются взаимозаменяемыми. Нефтяные сульфокислоты, как и мылонафт, тоже получаются при химической очистке нефтяных дистиллятов. Однако нефтяные сульфокислоты, известные под названием “контакт Петрова” и состоящие из собственно сульфокислот, воды, масла и небольшого количества серной кислоты, для производства гидрофобного цемента не применяются, потому что щелочные (а также и шелочно-земельные) соли сульфонафтеновых кислот в водном растворе дают обильную пену. На этой их особенности, кстати, базируется производство пенообразователей для пенобетона.

Из жирных кислот в производстве гидрофобного цемента могут найти применение технические кислоты, получаемые как из животных жиров, так и растительных масел, а также промышленные отходы, в которых содержатся те или иные высшие жирные кислоты.

Животные жиры включают главным образом стеариновую, пальмитиновую и олеиновую кислоты в виде смесей их триглицеридов. Встречаются также глицериды лауриновой, масляной и других кислот. В некоторых жирах, например в китовой ворвани, бывают и свободные жирные кислоты. В шерстяном жире наряду с глицеридами также содержатся и свободные жирные кислоты.

Читайте также: Можно ли заливать наливной пол на гидроизоляцию

При всем многообразии масличных растений произрастающих в наших климатических условиях, в растительных маслах преобладающее значение имеют всего пять основных жирных кислот: олеиновая, линолевая, линоленовая, пальмитиновая и стеариновая. В ряде растительных масел содержатся и другие высшие жирные кислоты, например рициноловая, эруковая, арахиновая, тоже являющиеся хорошими гидрофобизирующими добавками, но их малая распространенность в природе не позволяет рассматривать эти вещества, в качестве строительных добавок.

Для изготовления гидрофобного цемента наиболее пригодны те индивидуальные жирные кислоты или содержащие их промышленные продукты или отходы, которые при нормальной комнатной температуре имеют жидкую или вязкожидкую консистенцию. В первую очередь всем этим требованиям отвечает олеиновая кислота – именно на её использование и делался акцент ранее.

С развитием нефтехимии все большое значение для производства гидрофобного цемента стали приобретать синтетические жирные и нефтяные кислоты. Их изготавливают из парафинов и жидких углеводородов нефти. При окислении парафина получаются кислоты, по своему строению близкие к жирным. При окислении же керосина и высших фракций (погонов) нефти в основном получают кислоты циклического строения.

Благодаря успехам нефтехимии синтетические жирные кислоты (СЖК) достаточно легко удается получать в фракционированном виде – это очень важно для направленного управления теми или иными технологическими качествами цементов. Подбирая ту или иную фракцию СЖК можно хоть и не в больших пределах, но направленно управлять дисперсностью и проявлением гидрофобного эффекта цементов различного минералогического состава, управлять пластично-вязкими свойствами и эксплуатационными свойствами бетонов и растворов.

Технические характеристики и виды

Расширяющийся цемент
Все виды расширяющегося стройматериала выполняются на основе цемента глиноземного типа или цементных смесей, в состав которых входит глиноземный компонент. А вот в зависимости от ведущей добавки расширяющийся цемент бывает 5 видов.

  1. Расширяющийся портландцемент (РПЦ). Производится с добавлением доменного шлака, который наделяет состав повышенной прочностью. Чаще всего используется для возведения монолитных строений. Для штукатурных и облицовочных работ не годится из-за неравномерного линейного расширения и неровной геометрической поверхности. При погружении в воду или простом поливе уложенного раствора расширения достигнуто не будет. Изменения объема происходят только при разовом коротком пропаривании. Отвердевает состав в течение 30-80 часов.
  2. Гипсоглиноземистый цемент (ГГРЦ). Смесь на 30% состоит из гипса, который обеспечивает быстрое схватывание и застывание раствора. Хотя гипсовый цемент способен сохранять объем даже после застывания, абсолютно безусадочным его назвать нельзя. При застывании на воздухе уложенная смесь немного проседает, а расти способна только в водной среде. Для работы зимой и в межсезонье гипсоглиноземистый цемент подойдет лучше других. Он устойчив к морозам (до минус 25 °С), сохраняет полезные свойства при частых колебаниях температур.

На жаре и при повышенной влажности гипсоглиноземистый вид цемента «работает» плохо, утрачивая часть своих характеристик.

  1. Пластифицирующий (ПРЦ). Основой этого состава выступает портландцемент с добавлением пластификатора и сульфитного щелока в качестве расширяющего компонента. Его прочностные качества выше других видов цемента, а линейное расширение прогнозируемо. Это означает, что раствор создает ровную поверхность и может применяться там, где нужна строгая геометрия форм и плоскостей. Этот цемент считается выгодным — застройщику не нужно использовать чистый пластификатор. Его с успехом может заменить РЦ пластифицирующего вида.
  2. Водонепроницаемый (ВРЦ). Получается путем смешивания глиноземистого цемента, полуводного гипса и высокоосновного алюмината кальция. Смесь отличается быстрыми отвердевающими свойствами — схватывание массы наблюдается уже через 3 минуты после подготовки раствора. Масса полностью застывает спустя 25-28 часов, причем ее расширение происходит только при влажности не менее 70%. Снизить скорость отвердевания раствора удается при добавлении в состав буры или уксусной кислоты.
  3. Напрягающий (НЦ). Состоит из портландцемента, гипса и доменного шлака, отличается повышенной газо — и влагонепроницаемостью. При использовании масса вначале затвердевает, а затем расширяется, напрягая строительную конструкцию. Материал хорошо справляется с трещинами и дефектами, подходит для ремонта бетонных и железобетонных конструкций. Схватывается смесь в первые 4 часа, а окончательно застывает спустя 70-75 часов.

Каждый из указанных видов цемента отличается техническими характеристиками по ряду показателей:

  • начало схватывания — 4 минуты для ВРЦ, 20 минут для ГГРЦ, 30 минут для РПЦ, 2,5 часа для НЦ;
  • окончательный набор прочности — больше всего у ГГРЦ И РПЦ (до 80 часов), меньше всего у ВРЦ (около 25 часов);
  • предел прочности на сжатие — до 500 кгс/см2 у ВРЦ и ГГРЦ, 400-600 кгс/см2 у РПЦ и НЦ;
  • относительное линейное расширение — 0,02-1% (ВРЦ), 0,3-1% (РПЦ), до 3% (НЦ), 0,3-1% (ГГРЦ).

Все виды расширяющегося цементного раствора укладываются в опалубку с высоким уплотнением. Для набора объема и прочностных характеристик массе необходимо обеспечить рекомендованную температуру и влажность.

Улучшить технические характеристики расширяющихся цементных растворов помогают крупные и мелкие заполнители. С этой целью используется мелкофракционный кварцевый песок, гравий и щебень фракций от 5 до 70 мм. Заполнители увеличивают прочность раствора, сдерживают его деформации, снижают значения ползучести и частично компенсируют усадку.

Цемент особого назначения. Тампонажные смеси компании «Востокцемент»

Нефтегазовая промышленность – ведущая отрасль российской экономики, и ее развитие – приоритетная задача.

«Востокцемент» также вносит свою лепту в этот процесс – поставляет специальный цемент для тампонирования глубоких нефтяных и газовых скважин в сложных горно-геологических условиях. Эта важная с точки зрения технологического процесса операция часто определяет эффективность эксплуатации скважины, а при разведочном бурении – возможность правильной оценки запасов продуктивных нефтеносных слоев.

Каковы особенности такой продукции?

Производство цемента – ключевое направление деятельности . Цементные производят как общестроительные, так и специальные цементы.

C 2013 года цементные заводы постепенно начали переход на выпуск цемента по ГОСТ 31108- 2003 (сейчас ГОСТ 31108-2016) «Цементы общестроительные. Технические условия». Данный стандарт гармонизирован с европейским стандартом EN 197-1:2000 «Цемент», принятым в странах Евросоюза (ЕС) в части классификации, основных технических требований, методов испытаний, критериев и методов оценки соответствия цементов.

В соответствии с вступившим в силу Постановлением Правительства РФ от 3 сентября 2020 г. № 930 «О внесении изменений в единый перечень продукции, подлежащей обязательной сертификации» цемент включен в данный перечень. Все цементные прошли данную процедуру и получили сертификаты соответствия. До этого все заводы компании проходили добровольную сертификацию.

Качество цемента для – первостепенная задача. Все модернизационные мероприятия проводятся именно для этого – улучшить качество и повысить эффективность производства.

Цемент применятся сейчас на ключевых инфраструктурных объектах Дальнего Востока. Это Нижне- Бурейская ГЭС, космодром «Восточный», газопровод «Сила Сибири», мостовой переход через реку Амур в ЕАО, новые аэропорты в Хабаровске и Якутске и многие другие.

Нефтегазовая промышленность – ведущая отрасль российской индустрии, поэтому ее развитие – приоритетная задача. «Востокцемент» также вносит лепту в этот процесс – поставляет тампонажный цемент для тампонирования глубоких нефтяных и газовых скважин в сложных горно- геологических условиях при высокой температуре и высоком давлении.

Продукция «Спасскцемент»

Впервые производство тампонажного цемента было освоено на предприятии «Спасскцемент» во время Великой Отечественной войны, которая потребовала громадного количества горючего. Такой продукт не выпускался даже в Сибири, поэтому в 1943 году на Спасский цемзавод поступило правительственное задание освоить производство тампонажного цемента. В короткие сроки была отлажена технология производства цемента для нефтедобывающей промышленности, и ежегодно завод стал выпускать его по 2 тысячи тонн.

Производство тампонажного цемента на предприятии «Спасскцемент» не прекращалось и после войны – выпускали цементы ПЦТ I-50, ПЦТ I-100, ПЦТ G-CC-1, а также тампонажный низкогигроскопичный цемент. Максимальный объем был получен в 1982 году – 50,5 тыс. тонн.

В 1999 году была поставлена задача производства тампонажного цемента по стандарту Американского нефтяного института (API). Качество цементов классов G и H высокой сульфатостойкости независимо от страны-изготовителя находится под особым контролем. Лучшим производителям этот институт дает право на применение своей монограммы.

В течение нескольких лет с помощью ООО «Цемискон» была разработана и внедрена система менеджмента качества, произведены опытные партии цемента, Американским нефтяным институтом проведен аудит. 22.01.2001 «Спасскцементу» была выдана лицензия на право использования монограммы API при производстве тампонажных цементов класса G и H умеренной (MCR) и высокой (HCR) сульфатостойкости по стандарту API Spec 10A и сертификат на соответствие системы менеджмента качества стандарту ISO 9002:1994. С тех пор «Спасскцемент» регулярно проверяется аудитором нефтяного института, в настоящий момент выдан сертификат на соответствие стандарту ISO 9001-2015.

Стоит отметить, что аудит проводится ежегодно, двумя аудиторами в течение 5 дней: проверяются производство и система менеджмента качества. Проверка осуществляется по рабочим местам, по каждому процессу.

Детально проверяется документированная информация: политика, цели в области качества, управление записями. Проверяются все процессы: анализ контрактов, удовлетворенность потребителей, закупки, метрологическое обеспечение, квалификация персонала, контроль качества производства, внутренний аудит, хранение, маркировка и упаковка цемента. Проводятся испытания образцов тампонажного цемента.

На данный момент на предприятии «Спасскцемент» производят тампонажные цементы ПЦТ I-50, ПЦТ I-100 и ПЦТ I-G-СС-1, а также могут быть произведены ПЦТ I-H‑СС-1, ПЦТ I-G-СС-2, ПЦТ I-H‑СС-2 и другие марки цемента.

Применение тампонажных цементов

Главным назначением этого портландцемента является тампонирование газовых и нефтяных скважин. Слой бетона на основе таких цементов защищает металл от коррозийных и агрессивных воздействий. В отличие от обычного бетона в тампонажные смеси не вводится песок или какой-либо крупный наполнитель, снижающий их текучесть.

К отличительным особенностям относят тонкий помол, ускоренное твердение, повышенную прочность по окончании застывания и уникальную текучесть непосредственно после затворения водой. К последнему показателю предъявляются особые требования, указанная нормами скорость закачки тампонажного раствора – 1,5 м/с при довольно ограниченных размерах самого зазора. С учетом значительного давления в шахтах, возрастающего по мере их углубления, песок в такие смеси не вводится, вяжущее является единственным сухим компонентом.

В индивидуальном и жилом строительстве использование тампонажного цемента нецелесообразно, исключение делается лишь при закладке буровых свай под фундаменты в особо сложных условиях. Помимо защиты труб ПЦТ помогает уменьшить глубину скважины, укрепить ее дно или устранить повреждения обсадных колон.

Отдельно стоит отметить особенности тампонажного цемента класса G по ГОСТ 1581-96. Благодаря низкой начальной вязкости тампонажный цемент хорошо прокачивается в затрубное пространство скважины, обеспечивает хорошее сцепление с обсадной трубой и породой скважины. Низкое водоотделение – в 2 – 3 раза ниже, чем у отечественных тампонажных цементов, – обеспечивает хорошее сцепление с обсадной трубой и породой скважины и предупреждает седиментацию тампонажного раствора, а нормированное время загустевания (не менее 90 и не более 120 минут) предотвращает преждевременное загустевание тампонажного раствора в процессе тампонирования и в то же время обеспечивает быстрое схватывание и твердение раствора сразу после окончания этого процесса. Это обеспечивает надежное и качественное тампонирование, предупреждает недоподъем тампонажного раствора, обеспечивает надежное разъединение продуктивных пластов и пустот и за счет этого на 20 – 40 % повышает дебет скважины. Особый малоалюминатный и низкощелочной состав цемента обеспечивает высокую долговечность при одновременном воздействии агрессивных вод, высокой температуры и давления.

География поставок

С начала 2000 годов с развитием нефтегазовой отрасли потребность в тампонажных цементах возросла. Эти классы цементов использовались в пределах Дальневосточного федерального округа – например, при разведочном бурении на шельфе Камчатки.

В 2007 – 2008 годах тампонажные цементы ПЦТ I-50 и ПЦТ I-100 «Спасскцемента» поставлялись на объекты Уральского, Приволжского, Южного и Северо-Западного федеральных округов. Больше всего тампонажный цемент завода был востребован на нефтегазовых месторождениях Ямало-Ненецкого, Ханты-Мансийского автономных округов, Оренбургской, Самарской областей и Удмуртской Республики.

В 2010 году партия высокотехнологичного продукта предприятия «Спасскцемент» – цемента марки G – отправлена в Уральский федеральный округ, на станцию Карачаево в адрес компании-снабженца крупнейших нефтедобывающих компаний страны, включая «Роснефть» и «Лукойл», «Башнефть» и «Татнефть», «Сургутнефтегаз» и ТНК-BP.

На данный момент основные потребители тампонажных цементов находятся в Республике Саха (Якутия) и Сахалинской области.

Третья технологическая линия «Якутцемента»

Читайте также: Баня из пеноблоков: проекты, отзывы владельцев

В Республике Саха (Якутия) добывается более 10 миллионов тонн нефти в год. Потребность в тампонажных цементах закрывалась поставками из других регионов страны, в том числе с предприятия «Спасскцемент». «Якутцемент» не делал в последние годы тампонажный цемент, так как его мощности главным образом были направлены на производство общестроительных цементов для нужд быстро растущей Республики Саха (Якутия).

С запуском в 2020 году третьей технологической линии решено закрыть всю потребность в цементе в республике с , в том числе в тампонажных ПЦТ I-50 и ПЦТ I-100.

Поставками цемента предприятий «Спасскцемент» и «Якутцемент» занимается . Компания обеспечивает комплексное снабжение строительными материалами крупнейших объектов по всему Дальнему Востоку.

Тампонажный цемент предприятия «Спасскцемент» поставляется железнодорожным и морским транспортам. Отгрузка цемента с осуществляется автотранспортом и речным транспортом по реке Лена. Тарировка – мягкие специализированные контейнеры (МКР) по 1,5 тонны. Данная упаковка является удобной и современной тарой для перевозки, так как позволяет доставить груз в целостности и сохранности на большие расстоянии и выдержать несколько этапов загрузки-разгрузки. МКР состоит из полипропиленовой оболочки и водонепроницаемого вкладыша, которые хорошо защищают его от внешнего воздействия. На МКР имеется карман, в который вкладывается ярлык, указывающий класс цемента, партию, дату тарировки.

Применение

Ремонт бетона при помощи расширяющейся смеси
Глиноземистый РЦ применяется при проведении таких строительных работ:

  • Ремонт конструкций из бетона и железобетона, гидротехнических сооружений, реконструкция строений. Материал позволяет заполнять микроскопические пустоты, трещины, щели, тем самым препятствуя дальнейшему разрушению конструктива.
  • Срочное строительство в условиях низких температур или высокой влажности. В этих случаях лучше использовать гипсоглиноземистый цемент.
  • Обустройство сооружений, где нужно добиться ровной поверхности — дорожное строительство, прокладка беговых дорожек, ледовых катков, хоккейных полей, стадионов, мостов, аэродромов. Здесь отлично подойдет расширяющийся цемент с пластификаторами.
  • Изготовление сборных и монолитных резервуаров — бассейнов, водонапорных, очистных сооружений, канализационных насосных станций. Благодаря гидроизоляционным свойствам цемента обеспечивается герметичность и водонепроницаемость емкостей.
  • Создание влагостойких декоративных штукатурных смесей. Нанесенный поверх ракушечника и пенобетона, раствор сохраняет теплоизоляционные и прочностные свойства пористых стройматериалов.
  • Ремонт, строительство подземных каналов и коммуникаций — метрострой, переходы, шахтные проходки.
  • Склейка железобетонных материалов при строительстве высотных зданий. Цемент с эффектом расширения обеспечивает прочное соединение перекрытий со стенами, предупреждает разрушение, продлевает срок службы строения.

Расширяющиеся цементные смеси используются для приготовления всех разновидностей безусадочных бетонов. Материал имеет один недостаток — высокую стоимость, что ограничивает сферу его применения в частных домовладениях. Он подойдет для формирования настилов в погребах, сараях, для возведения бань, гаражей, обустройства дорожек на приусадебном участке, для восстановления стен жилых или подсобных строений.

узнать погоду here

Данная группа цементов характеризуется следующими видами: глиноземистый, расширяющийся и безусадочный цементы, гипсоцементно-пуццолановое вяжущее.

Глиноземистый цемент — это быстротвердеющее гидравлическое вяжущее вещество, которое получают в процессе тонкого измельчения сырьевой смеси богатой на глинозем до момента обжига или спекания. Сырьевыми материалами для данного вида цемента являются известь либо известняк, а также породы, в которых сконцентрировано высокое содержание глинозема. К таковым, например, относятся бокситы. Сроки его схватывания после затворения водой от 30 мин до 12 ч. Наша компания предлагает глиноземистый цемент следующих марок: 400, 500 и 600. Такой цемент в первые сутки набирает 80-90 % марочной прочности. Стоит заметить, что такой цемент имеет достаточно высокую стоимость в отличие от портландцемента, поэтому его применение ограничено. Область применения: получение расширяющегося и цементов, жаростойкие бетоны.

Для расширяющихся и безусадочных цементов характерно увеличение в объеме в процессе твердения во влажных средах и при этом не давать усадку. Мы предлагаем нашим клиентам данные виды цементов, а также гипсоглиноземистый расширяющийся цемент. Водонепроницаемый расширяющийся цемент относится к быстросхватывающимся и быстротвердеющим гидравлическим вяжущим веществам. Он состоит из глиноземистого цемента, высокоосновного гидроалюмината кальция и гипса, которые подвергаются совместному помолу и последующему тщательному смешиванию. У данного цемента малое время схватывания – 4-10 мин. Его используют для заделывания трещин и стыков в конструкциях из железобетона, гидроизоляции и зачеканки раструбных соединений, для получения гидроизоляционных покрытий. Но при этом стоит учитывать, что применять его в конструкциях, эксплатация которых происходит при температурах свыше +80 °С нельзя.

Водонепроницаемый безусадочный цемент – гидравлическое вяжущее вещество с малым временем схватывания и твердения. Получают его в процессе смешивания глиноземистого цемента, гашеной извести, полуводного гипса. Время схватывания составляет 1-6 мин с момента затворения. Сферами применения данного цемента является гидроизоляция железобетонных и бетонных подземных конструкций, которые эксплуатируются в условиях повышенной влажности, например тоннели, фундаменты.

Кроме безусадочных и расширяющихся цементов следует сказать о напрягающих цементах, которые характеризуются большой энергией расширения, обладают способностью обжимать бетон и натягивать арматуру без ухудшения сцепления между ними. Такой вид цементов классифицируется по величине самонапряжения :

  • напрягающий цемент с малой энергией самонапряжения НЦ-20;
  • напрягающий цемент со средней энергией самонапряжения НЦ-40.

Бетоны, приготовленные на основе напрягающих цементов, используются для тех конструкций и сооружений, которые должны отвечать высоким требованиям долговечности, водонепроницаемости, трещиностойкости. К таковым относятся различные подземные конструкции, насосные станции, напорные трубы, ограждающие конструкции, конструкции, имеющие большую протяженность. Любой из перечисленных видов специальных цементов вы можете приобрести в нашей компании.

купить смартфон самсунг гостиницы Ялты

Понравилась статья? Поделиться с друзьями:
Добавить комментарий
Adblock
detector